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Summary 
 
Fault interpretation is an important step in the seismic 
interpretation process and is critical for understanding 
challenges such as reservoir compartmentalization, fluid 
migration, and drilling hazards. Recently, assisted fault 
interpretation workflows leveraging machine learning 
techniques have become a promising way to automatically 
identify faults in seismic. Convolutional neural networks 
(CNNs) are a popular new method to identify fault attributes 
in seismic data by analyzing image segmentation and feature 
extraction. In this abstract, we applied a dual-channel CNN 
architecture to train seismic data and its discontinuity 
attribute together to increase the fidelity of the fault 
prediction process. We first trained a model using synthetic 
data only, we then trained a second model augmenting it 
with real data from the study area. We then implemented an 
unsupervised machine learning clustering approach to 
analyze the fault probability map and extract fault sticks. 
This automated workflow took less than an hour to complete 
compared with over a week for an experienced geoscientist 
to manually pick approximately 200 faults in the same study 
area. This experience shows that machine learning-based 
fault imaging and extraction is a valuable tool for fault 
interpretation.  The automated workflow can be used to 
provide a quick initial fault interpretation or to identify 
alternative interpretations and better assess fault uncertainty. 
 
Introduction 
 
Faults are important for many aspects of hydrocarbon 
exploration and development. Accurately identifying fault 
locations is necessary for trap identification and well 
planning. In recent years, fault interpretation driven by 
machine-assisted approaches has shown to be a promising 
way to reduce interpretation cycle time and improve the 
accuracy of prediction (e.g., Philit et al., 2019, Wu et al., 
2019). In this abstract, we apply a machine learning-based 
fault interpretation workflow to first generate fault 
probability seismic volumes, and then implement an 
unsupervised machine learning approach to generate fault 
sticks from these volumes. The complete workflow took less 
than an hour compared with over a week to interpret the 
areas by an experienced geoscientist. These results show that 
machine learning-based fault interpretation workflow can be 
considered an important tool for assisting in the 
interpretation of seismic data. 
 
The study area is a survey of around 460 square kilometers 
in Oman provided by Occidental of Oman. The 3D seismic 
is composed of roughly two million 3D seismic traces and is 

generally of very good quality. In this area, Riedel shear 
provides the dominant structural setting, creating an en-
echelon pattern of normal faults. Several algorithmic 
automatic fault extraction methods were previously 
attempted on this dataset with disappointing results. 
 
In this evaluation, we trained a dual-channel convolutional 
neural network (Jiang and Norlund, 2020) first with 
synthetic seismic data only, and then with a combination of 
synthetic data and manually interpreted data from a subset 
of the study area. The dual-channel network is a combination 
of seismic data and its discontinuity attribute which 
improves the accuracy of fault prediction. We then applied 
an unsupervised machine learning clustering algorithm to 
generate fault sticks from the fault probability volume. 
 
The study area 
 
Figure 1 shows the seismic data area for the study area in 
North Oman. The target zone is dominated by en-echelon 
normal faults created in a trans-tensional, Riedel shear 
structural setting.  Figure 1a illustrates the entire survey area 
and the faulted subset studied in this abstract. Figure 1b 
shows a seismic section from the target area where it shows 
a clear normal fault pattern. Figure 1c is the discontinuity 
attribute derived from the seismic section. 
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Assisted fault identification and surface extraction by machine learning 

 
Figure 1: The study area in Oman. (a) The entire survey area 
and the target zone; (b) the seismic section with normal fault 
pattern; (c) The discontinuity attribute derived from (b). 
 
Fault prediction by a synthetic deep learning model 
 
We started with a model trained with synthetic data only to 
predict an initial fault probability volume. A dual-channel 

convolutional neural network was implemented to train the 
model. The training dataset was generated using a synthetic 
data generator, then the synthetic seismic data was used to 
calculate a discontinuity attribute. The final training data 
was composed of seismic and its discontinuity attribute 
together. A normalization scheme was also applied to the 
dual-channel data to constrain the amplitude range of input 
data in a similar magnitude. This helps to avoid overfitting 
when predicting the fault probability volume. Once we have 
trained the synthetic model, we then calculate the 
discontinuity attribute for the testing data and apply the same 
normalization scheme. We used manually interpreted faults 
as the benchmark to validate our algorithm. Figure 2(a) 
shows a section view with faults predicted by the synthetic 
trained model. The manually interpreted faults are then 
overlain on the predicted fault probability volume. The result 
shows that the deep learning model trained by synthetic data 
can successfully identify most of the fault segments from the 
raw seismic data. 
 
This fault probability volume could be used by geoscientists 
during the initial interpretation phase to guide their work. It 
additionally could be used post-interpretation to help 
identify any missed or alternate interpretations. This further 
analysis can both improve the quality of the interpretation 
and bring insight into any uncertainty around the 
interpretations. How to best train machine learning models 

 
Figure 2: Fault prediction by our machine learning models (black lines) overlain on top of the original seismic amplitude along 
with manually interpreted fault sticks (dashed colored lines). (a) & (b) section and time slice comparing the model generated 
with synthetic data only. (c) & (d) section and time slice comparing the model augmented with real data. Overall, the machine 
learning results match very well with the manual interpretation with the augmented model generating cleaner, more continuous 
faults. However, there are some areas where the synthetic-data-only model performs better. 
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Assisted fault identification and surface extraction by machine learning 

to further understand the geology is still a topic of research, 
however, it is still necessary to require an experienced 
interpreter to make the final decisions in the fault 
identification process.       
 
Fault prediction by an augmented deep learning model 
including manually interpreted faults 
 
To improve the synthetic data trained model, we picked a 
small subset of the seismic cube (and its manually 
interpreted faults) and used them as additional training data 
and labels to re-train the synthetic model. The selected 
seismic used to re-train the model represents ~1.7% of the 
total survey area and ~3% of the total training data. 
Therefore, the model is still dominated by synthetic data but 
augmented by a small portion of real data. Figure 3a shows 
the selected seismic used to re-train the model, several 
selected fault planes used as additional training labels in 
Figure 3b. Figure 3c shows the converted fault mask from 
Figure 3b.  
 

 
 

Figure 3: The additional data used to re-train the synthetic 
model. (a) The selected 3D seismic data; (b) Fault sticks 
picked by an interpreter; (c) The converted 3D fault mask.  

Figures 2 (c) and (d) show the prediction result from the deep 
learning model re-trained with a subset of real data from the 
survey of interest. We observed that most faults are correctly 
predicted compared with the manual interpretation and the 
original synthetic model. Additionally, the augmented 
model shows cleaner, more continuous faults. Like the 
synthetic-only model it still missed identifying a few fault 
locations where manual faults were picked. This could be 
due to either the weak discontinuity along the seismic 
section or limitations of the deep learning algorithm. There 
are also several places where a predicted fault segment from 
the deep learning model does not make geological sense 
compared with the manually interpreted faults. This should 
be improved by including more valid data points from both 
the synthetic and the augmented data inputs. 
 
We noticed that in some areas the synthetic-only model 
shows better predictions than the model including the 
manual interpretations. This highlights some of the 
limitations of including non-synthetic data. Firstly, even in 
the small subset of the volume we selected not every fault in 
the seismic has been interpreted. These un-interpreted faults 
get included in the model, reducing the model’s ability to 
identify all faults, Secondly, interpretation can be a highly 
subjective process. Even experienced geoscientists can 
interpret the same seismic section in many different ways 
(Alcalde et al., 2017). By including just one geoscientists 
interpretation into the model you are adding that person’s 
biases (both good & bad) into the model and thus limiting 
the ability of the model to generate genuine alternate & valid 
predictions.   
 
We may find that as the interpreter trains the machine 
learning tool, the machine learning tool can also help train 
the interpreter.  If the machine learning results are not as 
expected, the interpreter can update the user-provided 
training.  This interactive feedback loop can help an 
interpreter refine their fault picking skills to get an optimally 
trained CNN.  Also critical in this process is to have the 
synthetic training dataset match the geologic environment.  
Trying to predict a trans-tensional fault pattern using a 
synthetic dataset from compressional models would be 
futile.  The closer the structure and stratigraphy of the 
synthetic model to the real geology, the better. 
 
Fault extraction by unsupervised machine learning 
approach 
 
As the last step, we implemented an unsupervised machine 
learning clustering approach to generate fault sticks from the 
fault probability maps. A machine learning clustering 
approach is used to find the K nearest neighbors of a specific 
point or location, then go around to find all neighbors within 
a certain radius (Rabbani et al., 2006). Once all neighbor 
points are found, we consider them as seed points, growing 
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Assisted fault identification and surface extraction by machine learning 

from the point that has the minimum curvature value until 
there are no unlabeled points in the cloud. Figure 4 shows 
the fault planes extracted in the study area. To interpret faults 
from the seismic data, an experienced geoscientist spent over 
a week manually picking approximately 200 correlated 
faults whilst the machine learning approach only took less 
than an hour to identify the fault locations as well as generate 
the fault sticks. Having editable fault sticks provides the 
interpreter with the ability to keep the machine learning 
results where it was successful and make edits to the fault 
sticks where a manual interpretation could improve the 
results.  This leverages the power of the machine learning 
capabilities and the geologic knowledge of the interpreter. 
 
 

 
 

Figure 4: Fault planes extracted by unsupervised machine 
learning approach. 
 
Discussions and Conclusions 
 
In this abstract, we implemented a dual-channel 
convolutional neural network to successfully generate fault 
probability volumes from a dataset in Oman. Our first 
volume was created using only synthetic data and this 
machine learning-based approach correctly predicted faults 
in much of the seismic data as verified by comparing to the 
manual fault interpretation. The volume also identified some 
missed faults as well as valid alternative interpretations.  
 
Our second volume used both synthetic data and manual 
interpreted faults whilst in most areas it performed superior 
to the synthetic only volume (correctly identifying faults 
missed by the synthetic only model and generating cleaner, 
more continuous fault probabilities) in some areas it 
performed less well highlighting the limitations of using 
subjective data such as manual fault interpretations to train 
machine learning models.  

After creating the fault probability volume, we then 
successfully ran an unsupervised machine learning 
clustering algorithm to extract fault sticks from the fault 
probability volume. The resulting fault planes compared 
very favorably with the manual interpretations in most areas. 
However, we also observed that some machine learning 
faults did not make geological sense, which could due to 
missing the necessary fault types to train a model, e.g. strike-
slip fault, reverse fault, or due to weak signal-to-noise ratio. 
The manual fault interpretation used in this project required 
an experienced geoscientist who spent over a week manually 
picking segments whilst the machine learning approach took 
less than an hour to complete the workflow.   
 
Machine learning fault extraction is a valuable new addition 
to the discontinuity and curvature tools currently used by 
exploration and development geophysicists.   An exploration 
geophysicist can use the machine learning fault extraction to 
help with initial recon mapping of an area.  A development 
geophysicist can use the machine learning fault extraction to 
provide fault locations for well planning.  In all cases, the 
machine learning results will still require detailed review by 
an interpreter to assess the validity of the automated fault 
prediction.     
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