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Welcome to the April edition of the Subsurface Insights magazine. This is an exciting edition for 
me, as it is my first as the new editor. I replace Rebecca Head, who is moving to a new position 
within the company, having served as editor for four years. Best of luck Rebecca!

Over the years, the readership and reach of this magazine has grown, and we have also 
widened the scope of the subject matter. I am committed to continuing that trend. The 
ambition of the magazine has been to provide substantive, state-of-the-art pieces on a wide 
range of subjects that appeal to customers and non-customers, alike. Forthcoming articles will 
be no different.

This is certainly an interesting moment for me to be taking the reins, with so many changes 
occurring in the industry. Recent events are forcing oil and gas companies to re-focus on 
value generation, higher value assets, closer-to-market targets, and geological knowledge 
adjacencies. In response to such challenges, our lead article this month discusses ‘advantaged 
hydrocarbons,’ which is becoming a key concept as companies assess their portfolios and 
future exploration plans with the energy transition in mind.

As part of our aim to broaden the magazine’s view, this edition includes the second installment 
of a two-part feature on Landmark innovations, highlighting the use of machine learning in 
seismic analysis. Finally, we have an insightful piece on our continued drive to increase the 
efficiency of Neftex® geoscience workflows; in this case, by using Python™ software to solve 
complex geometrical and paleogeographical mapping problems.

I hope you enjoy this special edition. Your interest is very much appreciated, and your feedback 
is always welcome — please do not hesitate to contact us.
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MEETING DEMAND, RESPONSIBLY
Together, oil and gas currently provide around 55 
percent of the global energy supply (BP, 2020). 
Simmons et al. (2020) and Davies and Simmons 
(2020) have highlighted how challenging it is to 
quickly replace hydrocarbons with low-carbon 
energy sources. Consequently, oil and gas form 
a significant part of the energy mix in future 
energy demand scenarios, even those focused 
on meeting the goals of the Paris Agreement 
on Climate Change. An analysis of recently 
published rapid energy transition scenarios 
suggests around 950 billion barrels of oil (BBBL) 
and 4,750 trillion cubic feet (Tcf) of gas will be 
required in the next three decades, with around 
280 BBBL of oil and 2,200 Tcf of gas needing to 
be found to complement existing recoverable 
reserves (Figure 1) (Davies and Simmons, in 
press). To place this in context, that is an oil 
demand equivalent to approximately 62 percent 
of all the oil we have so far consumed, and 
approximately 108 percent of all the gas we have 
consumed to date. A key consideration for the 
oil and gas industry will be the emphasis placed 
on ‘advantaged hydrocarbons’ — those with a 

relatively low carbon/energy intensity to discover 
and produce. In combination with significant 
carbon sequestration activity, this will help ensure 
that demand for hydrocarbons is met in the most 
environmentally responsible manner.

In this article, we review the concept of 
‘advantaged hydrocarbons’, with a focus on 
how the nature of the subsurface, and the 
hydrocarbon fluids to be extracted, impact 
the carbon/energy intensity of exploration and 
production operations.

RECOGNIZING ‘ADVANTAGE’ IN 
THE SUBSURFACE
The term ‘advantaged hydrocarbons’ is beginning 
to resonate within the oil and gas industry, 
although it has lacked a precise definition. 
The term has been related to low-risk, large 
volumes of oil or gas, with a relatively low 
cost of exploitation (e.g. because of proximity 
to established infrastructure). ‘Super basins’ 
(Fryklund and Stark, 2020) are an example of 
this concept. However, it can be expanded to 
capture the notion that hydrocarbons need to be 
found and produced while keeping greenhouse 

advantage will form part of the screening and 
decision‑making process, leading to project 
sanction. Such a concept is compatible with 
the increased focus on sustainability within the 
industry (IPIECA, 2020; OGCI, 2020).

gas (GHG) production to a minimum during 
operations. Indeed, low-cost, low-risk, large 
volumes and minimal GHG emissions often 
go hand in hand. In determining which plays 
and prospects to explore, and which assets to 
exploit, consideration of the relative degree of 
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Figure 1 >  Future oil and gas demand as determined from an analysis of multiple rapid energy transition scenarios. The red Paris Mean 
curve is a mean value calculated from nine future energy demand scenarios, all in keeping with best efforts to meet the goals of the 
Paris Agreement on Climate Change. Scenarios analyzed are: Barclays (Dynamism), BP (Rapid Transition), Equinor (Rebalance), IEA 
(Sustainable Development), McKinsey (Accelerated Transition), Rystad Energy (Governmental Targets), Shell (Sky), Total (Rupture), and 
World Energy Council (Unfinished Symphony). Modified after Davies & Simmons (in press).
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We, therefore, favor the following definition for 
advantaged hydrocarbons:

Economically prioritized hydrocarbons 
that can be discovered, exploited, 

and decommissioned in a long-term, 
low‑oil‑price context in a sustainable 

and environmentally sensitive way, with 
minimal carbon intensity.

Advantage will not be the only factor that 
determines the sanctioning of an exploration or 
production project, but it does give an indication 
of the head start a project may have in the race to 
be sanctioned.

Key characteristics of advantaged hydrocarbons 
include: 

	» Low risk of exploration failure or poor 
production characteristics per well  
Note: Dry wells or high water-cut 
production wells are wasted energy and 
can create unnecessary GHG emissions.

	» Relatively simple to drill

	» Minimal need for subsurface 
interventions once in production, leading 
to limited topside environmental footprint 
with predictable and stable long-term 
production

Herein, we are particularly concerned with 
emissions associated with upstream activities, 
although ultimately, the emissions associated 
with the full lifecycle of the product are important 
(Jing et al., 2020). Gordon et al. (2015) created 
the Oil-Climate Index (OCI) to quantify the total 
lifecycle GHG emissions of individual oils. They 
noted a range of GHG emissions corresponding 
to a range of oil types classified by their density, 
depth, and extraction method (Figure 2). Extra-
heavy oils have typical GHG emissions 60 percent 
greater than light oils. Similar calculations have 
been conducted for total lifecycle GHG emissions 
for gas (Jiang et al., 2011; Burnham et al., 2012).

The Oil Production Greenhouse Gas Emissions 
Estimator (OPGEE) (El-Houjeiri et al., 2013, 
2017) takes the concept of OGI one step further. 
OPGEE considers a comprehensive set of factors 
that contribute to GHG emissions during the 
complete lifecycle of oilfield development and 
enables calculation of GHG emissions and carbon 
intensity. Upstream factors include seismic data 
gathering, exploratory drilling, development 
drilling, lifting, injection, fluid separation, and 
storage.

Using OPGEE, Masnadi et al. (2018) reviewed 
the average Carbon Intensity (CI) index (g CO2 eq. 
MJ−1) of oil and gas operations in a large number 

With favorable geology, drilling and subsurface 
engineering becomes easier and less energy 
intensive, leading to lower GHG emissions.

Benchmarking studies are required to fully 
assess and quantify the impact of all the possible 
variations of subsurface geology on advantage; 
but, nonetheless, some broad observations on 
geological criteria and their impact on advantage 
can be made (Table 1).

of countries. Results ranged from a low of 3.3 
(within a range of 3–7) for Denmark to a high of 
20.3 for Algeria and Venezuela (within a range of 
15–30+). This wide spectrum reflects production 
ranging from pure methane or light oil in 
geologically simple, relatively shallow reservoirs, 
to the exploitation of heavy, biodegraded oil in 
complex reservoirs. The CI index, therefore, 
reflects both subsurface geology and engineering 
practices, although the two are intimately linked. 
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Figure 2 > Total lifecycle GHG emissions associated with different types of hydrocarbons. Data for oil come from Gordon et al. (2015) 
and Jiang et al. (2011), and Burnham et al. (2012) for gas. Modified after Davies & Simmons (in press).

Table 1 > Example of geological risks to be considered in screening for advantaged hydrocarbons. Modified after Davies and Simmons (in 
press).



The geological risks listed in Table 1 can be 
screened at the play, prospect, or asset scale to 
determine relative advantage, or disadvantage, 
to assess their impact on the carbon/energy 
intensity of operations. Benchmarking and 
sensitivity analysis are required to quantify the 
impact of each risk and the interplay between 
them, but qualitative analysis allows for relative 
ranking.

Methane emission reduction is a key industry 
target in reducing the GHG footprint of oil and 
gas operations (OGCI, 2020). Upstream gas 
management strategies could potentially mitigate 
approximately 18 Gt of CO2 equivalent emissions 
in the 21st century (Masnadi et al., 2018).

In addition to these geological factors, there are 
other criteria that serve to reduce the energy 
intensity and potential GHG emissions of 
exploration and production operations. Examples 
include:

	» Proximity to existing infrastructure, 
including availability of gas processing to 
exclude flaring

	» Operations taking place outside of 
environmental extremes

	» Use of geothermal energy from produced 
waters, or tethered wind energy facilities

	» Reinjection of produced CO2 both into 
associated saline aquifers (as at Sleipner 
in the Norwegian North Sea) and to 
facilitate enhanced oil recovery (EOR)

	» Maximize use of existing data to 
understand the subsurface geology for 
both exploration and production

EXAMPLES OF ADVANTAGE
A good example of advantaged hydrocarbons can 
be found in the oil fields offshore Guyana and 
Suriname (e.g. Liza). It is anticipated that eight 
production wells will be required in a field such 
as Liza, with each well capable of producing 56 
million BBL during its lifetime (Presley, 2019). 
The oil is a low-sulphur, light, sweet crude with 
the reservoir formed of thick, low-heterogeneity, 
highly porous and permeable sandstones. The 
reservoir has a relatively high pressure, reducing 
the need for artificial lift, at least in the early 

stages of the field’s life. These discoveries are at 
the lower end of the exploration and production 
cost spectrum (USD 35 break-even).

Other examples of advantaged hydrocarbons 
include the recent gas discoveries in the Eastern 
Mediterranean (e.g. Zohr) and the Black Sea 
(e.g. Domino, Tuna/Sakarya). In a more mature 
province, new discoveries near the ETAP 
(Eastern Trough Area Project) cluster of fields in 
the Central North Sea can be integrated into an 
existing, GHG-efficient infrastructure.

Gas as an energy source contributes to 
significantly reduced GHG emissions (Tanaka 
et al., 2019). The partial replacement of coal for 
electricity generation by gas derived from shale 
gas plays has contributed to significant reductions 
of GHG emissions in North America (Schivley 
et al., 2019). While the paradigm of advantaged 
hydrocarbons is focused on the energy 
expenditure and GHG emissions associated 
with exploration and production, gas should be 
considered ‘advantaged’ in an overriding, general 
sense.

LOOKING AHEAD
The concept of advantage will change the 
landscape for oil and gas explorers. Plays, 
prospects, and assets once considered viable 
for exploration based on prospective return on 
investment may no longer be sanctioned if they 
fail to be classified as advantaged. Moreover, 
fields in the late stages of their life move from 
advantaged to disadvantaged as energy-intensive 
EOR techniques are required to sweep remaining 
hydrocarbons from a reservoir (Masnadi and 
Brandt, 2017). Hence, while there are large 
volumes of discovered oil and gas to meet 
demand for many years to come, is it the best 
resource? Most of the world’s undeveloped 
barrels have stayed in the ground because they 
are high cost and need higher prices to bring to 
market. This indicates that they are geologically 
complex and, therefore, will be energy-intensive 
to produce. Discovery of new, advantaged 
hydrocarbon resources may be preferable.

Geoscience and engineering ingenuity have 
enabled oil and gas to be found and exploited 
in diverse environments and subsurface 
settings. That same ingenuity can be used to 

factor) and associated engineering. Nonetheless, 
a qualitative screening for relative advantage 
based on geological criteria is possible.
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turn disadvantage into advantage. An example 
of shifting to technologies that have a reduced 
carbon footprint include the use of reformulated 
(non-Portland) cements. Ocean bottom sensor 
nodes are also creating an energy efficient 
revolution is seismic imaging (Walker, 2020). 
Most importantly, ever-improving modeling and 
characterization of the subsurface will drive 
more effective and efficient exploration for, 
and exploitation of, hydrocarbons, leading to 
associated reductions in carbon/energy intensity.

Looking ahead, exploration in a low-carbon world 
will be more targeted, focusing on the best rocks 
and fluids, especially gas. In the last two years, 
aggregate upstream carbon intensity has fallen 
by 7 percent to reach 21.1 kg CO2e BOE−1 (OGCI, 
2020). The Oil & Gas Climate Initiative (OGCI) has 
set a goal of 20 kg CO2e BOE−1 for 2025. If the 
focus on advantaged hydrocarbons continues, 
Brandt et al. (2018) calculate that emissions 
equivalent to 10–50 Gt of CO2 could be mitigated 
by 2050. Such mitigation measures can be 
supported by substantial efforts regarding carbon 
capture, utilization, and storage (February 2021 
issue of Subsurface Insights Magazine).

CONCLUSIONS
Advantaged hydrocarbons can be in part 
characterized by their geological attributes, as 
this in turn governs the energy intensity of their 
exploration and production (Davies and Simmons, 
in press). Better subsurface understanding 
leads to lower exploration risk and the drilling of 
fewer dry wells, with minimization of associated 
wasted energy and, hence, GHG production. 
Similarly, better reservoir models can lead to 
optimal well placement and efficient recovery 
of hydrocarbons, thereby, reducing energy 
expenditure per barrel recovered and, therefore, 
reducing GHG emissions.

Examples of favorable geological attributes 
include the occurrence of only a single phase of 
hydrocarbon fluids with minimal impurities and 
extensive, thick, homogeneous reservoirs with 
excellent reservoir quality. Benchmarking and 
sensitivity analysis are needed to quantify the 
advantage-disadvantage spectrum associated 
with different hydrocarbon exploration and 
production opportunities, as that spectrum relates 
to subsurface geology (a primary controlling 
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The interpretation of faults in 3D seismic data 
is an important component of hydrocarbon 
exploration and development workflows. 
However, the traditional methods of interpreting 
faults (typically, the manual interpretation of faults 
sticks) can be  labor-intensive and expensive. To 
address this, a wave of innovative, technological 
improvements has led to the creation of tools 
for assisting, or automating, fault interpretation. 
The first article of this series (Norlund and 
Angelovich, 2021) discussed traditional, physics-
based approaches and how software advances, 
such as Halliburton Landmark’s Seismic Engine, 
a DecisionSpace® 365 cloud application, have 
revolutionized the industry’s ability to generate 
accurate fault-imaging attributes and provide 

new insights into interpretation uncertainties. 
This follow-up article discusses how emerging 
machine learning (ML) technologies are being 
leveraged today, and how they help change our 
approach to assisted fault interpretation.

With traditional, physics-based fault imaging 
approaches, even advanced attributes, such 
as fault likelihood, can have their limitations. 
For example, they often misidentify features 
in seismic data that are not faults, but other 
geological discontinuities or defects in the 
seismic data. Additionally, these attributes 
typically require a clean break in the seismic 
data to identify a fault; however, many faults are 
not clearly imaged due to seismic processing 
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Example of a machine learning fault prediction. The first image is the original input seismic. The second image shows the predicted faults merged 
with the original data. Data courtesy of Geoscience Australia.
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(input seismic + fault labels), and then run that 
model on the full dataset to generate a fault 
probability volume. Typically, synthetic data are 
used to train the model, which is then applied to 
real field data to generate the output. The input 
fault labels represent the interpreter’s knowledge 
that is required to build the predictive model. 

Figure 2 compares a traditional, physics-based 
attribute (2B) with a CNN-derived prediction 
(2C). The ML result compares favorably to the 
physics‑based approach, but lacks a lot of detail. 
It is also clear, however, that the physics-based 
attribute has identified many features that are 
most likely not faults.

limitations (e.g. fault shadows). Thus, these 
approaches can have trouble with noisy data.

During manual interpretation, an experienced 
geoscientist can often overcome such limitations 
by successfully differentiating between real 
geologic faults and seismic data quality defects. 
They can also often correctly identify faults even 
in poorly imaged seismic.

That is where ML can help by incorporating 
elements of the interpreter’s learned knowledge 
into automated workflows. This article discusses 
three ML approaches — convolutional neural 
network (CNN), random forest, and generative 
adversarial network — and shows how they are 
being used within Landmark software to assist 
the geoscientist and significantly reduce the 
interpretation life cycle.

USING MACHINE LEARNING TO 
IMAGE FAULTS
We can think of identifying faults in seismic as 
an image classification problem. In a seismic 

section, the goal is to classify (label) all the 
samples as either ‘fault’ or ‘not-fault’, something 
that is done via Seismic Engine. CNNs have 
shown to be effective tools for solving these 
types of issues in other industries, such as 
biomedicine (e.g. Ronneberger et al., 2015). A 
CNN is a deep learning algorithm, which can take 
an input image, assign importance to various 
aspects in the image, and then differentiate one 
aspect from another. It does this through a series 
of layers, each more sophisticated at identifying 
details in an image. In a U-Net CNN architecture, 
which is essentially two mirrored CNNs, an 
output image is generated the same size as the 
input, but with specific features predicted. This 
is precisely the problem needing to be solved, as 
shown in Figure 1.

CNNs have been applied to the challenge of 
detecting faults with good results (e.g. Huang 
et al., 2017; Jiang and Norlund, 2020). In these 
examples, the process is the same; train a model 
based on a subset of data with known answers 
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Figure 1 > A simplified diagram showing how a U-Net Convolutional Neural Network takes an input seismic volume and classifies it into 
distinct features (fault & not-fault). Resolution = IL, XL, Z, Channels.

Figure 2 > Examples of attributes discussed, imaged in the same seismic section. (A) Original amplitude seismic, (B) raw fault likelihood, 
(C) ML fault probability from amplitude data, (D) ML fault probability from multiple seismic attributes, (E) ML fault probability from 
multiple seismic attributes with GAN applied, and (F) volume ‘e’ overlain in original seismic ‘a’. Data courtesy of Geoscience Australia.
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The second challenge is, which attributes should 
be used? Rather than manually testing every 
combination of seismic attributes to see which 
ones give the best results, an ML technique 
called random forest (RF) architecture is adopted. 
RF methods can efficiently decipher which 
seismic attributes are optimal for predicting 
faults. Once identified, these attributes are input 
as additional channels into a multi-channel U-Net. 
Figure 2 shows the results from Seismic Engine 
using multiple attributes (2D) versus the single 
amplitude volume (2B). It can be seen that much 
greater detail has been gained and fault prediction 
improved, while avoiding many of the false 
predictions inherent in the traditional approach.

While the addition of further attributes predicts 
more faults, with better continuity, there are 
areas where fault predictions extend beyond 
actual fault-plane locations, and the imaging is not 
as clear as an interpreter would hope for. Further 
improvement is, thus, desirable.

BRINGING FAULT PREDICTIONS 
INTO FOCUS
The third ML technique is a post-processing step 
that helps to fine-tune the fault probability images 
generated by the previous methods. Generative 
adversarial networks (GANs) are algorithmic 
architectures that pit two neural networks against 
each other as ‘adversaries’. One network (the 
generator) creates new images, while the other 
network (the discriminator) tries to classify 
examples as real or fake. The two models are 
trained together until the discriminator outwits 
the generator. GANs have been applied to many 
different geophysical problems, such as reducing 
noise in seismic processing workflows and 
assisting in the identification of features such as 
salt bodies and facies (Liu et al 2019). Here again, 
synthetic data are used to train the adversarial 
model, which is then applied to real data. Figure 2 
shows that the fault images reconstructed with 
GANs (2E & F) display clearer, thinner, and more 
continuous segments.

LEVERAGING SEISMIC 
ATTRIBUTES TO IMPROVE FAULT 
PREDICTION
Results from a CNN approach can be improved 
in several ways. First, more synthetic data (more 
interpreter knowledge) could be generated to 
train a better model. Another way is not just to 
provide more of the same data, but to provide 
better data.

A seismic image has more information than a 
traditional photograph. It is made up of complex 
traces from which multiple properties (attributes) 
can be calculated. These attributes give further 
insight into a dataset, since different attributes 
can reveal very specific subsurface features (e.g. 
variations in frequency volumes give insight into 
the expected fluid or gas content of a reservoir). 
Different attributes can also vary in how well they 
image faults throughout a volume. This additional 
information can be incorporated into the training 
and prediction process. Additional attributes 

are added as new channels into an extended 
U-Net architecture (Jiang and Norlund, 2020) 
(Figure 3a).

There are two potential challenges with this 
approach. Firstly, having to generate additional 
seismic attributes at multiple steps of an 
ML fault-identification workflow could be 
prohibitively expensive, from a computational 
point of view. To overcome this, technologies 
such as cloud computing and Halliburton 
Landmark’s Seismic Engine can be used to 
parallelize and distribute any process, allowing 
thousands of computations to be run at the 
same time. Additionally, the elasticity of the 
cloud can be used to scale-up and make 
available the resources needed to efficiently 
run the entire workflow. Once the intensive 
computations are complete, Seismic Engine 
can automatically scale back down, so expense 
is not wasted on resources that are no longer 
required.
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Figure 3 > A workflow for augmenting ML 
fault model training with (a) multiple seismic 
attributes, and (b) real data. Based on Jiang & 
Norlund, 2020.



As good as these ML results are, it is important 
to understand the limitations of the approach. 
Firstly, any uncertainties, biases, or errors in 
the manual interpretations are incorporated into 
the model and will be propagated throughout 
the output fault probability volume. Secondly, 
it is unlikely that every fault in the real seismic 
subset had been interpreted, as there is often 
neither the time, nor need, to interpret every 
fault present. In such situations, the model 
is trained not to recognize valid faults, which 
further compromises the results. While these 
challenges do not invalidate the use of real data 
in training models for seismic interpretation, 
it good to appreciate the limitations of this 
approach in order to extract the full value from 
the ML predictions.

SUMMARY
We are now in the Age of Machine Learning, 
and one can clearly see how many of these 
technologies can be leveraged to assist the 
seismic interpreter. Convolutional neural 
networks are well suited to identifying faults in 
seismic, random forest approaches can indicate 
which data to use as an input for training, and 
generative adversarial networks can clean and 
optimize fault image volumes. By incorporating 
experienced geoscientists’ knowledge into the 
workflow automation process, ML improves 
upon traditional methods by better identifying 
faults in noisy data and helping to differentiate 
between real faults and other discontinuities. 
However, as with any new technology we 
must be careful not to replace one approaches 
limitations with a new set.

ML also requires caution not to incorporate the 
imperfections of human interpretation into the 
new models, and remember that there are still 
many areas where traditional physics-based 
approaches give superior results. So, for now, 
both physics- and ML-based approaches should 
both be leveraged to assist in fault identification.

Cloud technologies, like Halliburton Landmark’s 
Seismic Engine, are helping efficiently deliver 
these new tools to users, while allowing 
integration with more traditional workflows. 
With Seismic Engine, physics- and ML-based 
approaches can be combined to produce 
optimal results for any dataset. This is especially 

important as datasets continue to grow in size, 
and the need for assisted seismic interpretation 
becomes more important.
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ADDING REAL WORLD DATA TO 
OUR MODELS
In all the ML approaches discussed so far, the 
examples exclusively use synthetic data to train 
the models. Why not use real data and its manual 
interpretation? The reason for using synthetic 
data is that examples can be created where 
there is only one possible correct interpretation. 
Thus, the model is always being trained with 
the correct answer. Real, field-acquired seismic 
data and its manual (human) interpretation, 
however, are not so simple. It has been shown 
by a number of experiments (e.g. Alcade et al., 
2017) that even experienced interpreters can 
come up with different interpretations of the 
same seismic. This shows that interpretation, by 
its very nature, is a non-deterministic challenge 
with multiple answers available for every seismic 
section analyzed. There is not one correct answer 
to train a model. As such, examples from real 
datasets need to be selected with caution and 

instances favored where the potential variation in 
answers is minimal. Luckily, only a small amount 
of real data is needed to make a noticeable 
improvement in prediction accuracy.

Figure 4 shows the impact of augmenting 
synthetic models by incorporating real data into 
the CNN training process. In this example, a 
dataset from offshore NW Australia is used. 
Figures 4A and 4B show the results from 
generating an ML probability volume using only 
synthetic data and labels. Figures 4C and 4D 
show the results when the model is re-trained, 
augmenting it with a small subset of real data 
and its associated manual fault interpretations 
(Figure 3b). Despite the small amount of real data 
used (the manually interpreted data covered only 
approximately one percent of the full volume), 
a significant improvement is achieved using 
the augmented model. Faults are more clearly 
imaged, especially where the geology is complex.

18 | Halliburton Landmark Subsurface Insights | 19    

Figure 4 > Examples of an ML fault prediction volume created using synthetic data only (A, B) compared to a volume created using a 
model augmented with real data (C, D). Data courtesy of Geoscience Australia.



INTRODUCTION
Creating palinspastic gross-depositional 
environment (pGDE) maps is a time-consuming 
task. Not only does a geoscientist need to 
understand the regional geological context, 
but also the effects of plate movement 
through geological time. With such a complex 
4-dimensional challenge, anything that could be 
automated is worth investigating, as this will 
enable geoscientists to bring their skills to bear 
on the other pieces of the puzzle — without 
being distracted by mundane tasks, such as 
data manipulation. This article demonstrates 
how Python™ programming language can 
be leveraged to automate time-consuming 
geospatial operations, thereby, enabling 
the geoscientist to spend more time and 
creative energy on the higher value tasks of 
understanding and predicting the geology.

THE VALUE OF PGDE MAPS
Neftex® Predictions pGDE maps are an important 
part of our holistic Earth Systems approach to 
understanding and depicting the evolution of the 
planet. The rigorous and integrated nature of our 
global models provides regional context and a 
robust framework of geological understanding 
within which to better predict the occurrence, 
extent, and quality of key petroleum elements. 
pGDE maps show potential reservoir, source, 
and seal intervals in the context of the paleo 

geographies in which they were deposited. This 
allows for a greater appreciation of the factors 
involved in their deposition, particularly when 
considering progressively older stratigraphy. 
Details on pGDE map creation and utility are 
outlined within a previous Neftex Exploration 
Insights magazine article (Saunders et al. 2019).

WHAT’S TAKING SO LONG?
Creation of a global pGDE map for a single time 
slice takes many weeks. The process involves a 
team of geoscientists, who require time to collate 
and assimilate available data, reconstruct the data 
to its palinspastic position, become familiar with 
the regional geological setting, and finally begin 
drawing pGDE facies onto the map. This process 
takes not only time, but also requires geological 
brainpower. On top of this, the geoscientist is 
presented with an initial map of reconstructed 
geometries, created through the application 
of our geodynamic model (Figure 1). These 
“shattered glass” maps are full of overlapping 
polygons, empty space, and minute fragments 
of polygons. Tectonically complex areas are 
particularly prone to this problem. Such errors 
are the result of the splitting and rotation of 
polygons that overlap plate boundaries during 
reconstruction to palinspastic space. The manual 
resolution of these errors consumes a significant 
amount of time that would be better spent 
focussing on the geoscience. So, what can be 
done to remove this time sink?

PYTHON TO THE RESCUE
Over recent years, Python has become an 
important, if not vital, tool in geoscience. It is 
a high-level, object-orientated programming 
language that is easy-to-use and, therefore, 
an ideal choice for a beginner’s introduction to 
programming. Python is delivered with a large 
standard library that supports the majority of 
basic tasks. Functionality can be easily expanded 

using numerous open source libraries that are 
readily available.

An important first step in any automation task is 
to fully understand the problem being addressed. 
Here, the problem is represented by the gaps 
created during reconstruction of present day GDE 
polygons to palinspastic space (Figure 1). Two 
differing techniques were used to infill the gaps, 

20 | Halliburton Landmark Subsurface Insights | 21    

Python programming language. Image courtesy of 1840151sudarshan, CC BY-SA 4.0, via Wikimedia Commons.

Figure 1 > Example 
of GDE polygons 
from present day 
reconstructed into 
palinspastic space. Pink 
areas represent gaps 
created as a result of 
reconstruction.

Figure 2 > Method 2: Using the Neftex® Predictions Plate Model to create and fill the gap polygons. Inputs being the Neftex Predictions 
Plate Model Geodynamic Units (GDUs) and present-day GDE map polygons. Output being a series of polygons filling the gaps created 
once present-day polygons are reconstructed back to palinspastic space.

How to Free a Geoscientist: 
Using Python™ to Automate 
the Mundane
by: James Scotchman

https://geoweb.neftex.com/ExplorationInsights/home/open?id=joomag-embed-88b4f83b-b7e9-4858-81f1-465647516912&view=exploration-insights-may-2019clone/0394491001595260812&page=11
https://commons.wikimedia.org/wiki/File:Python_image.jpg
https://creativecommons.org/licenses/by-sa/4.0


with varying levels of success. Method 1 involved 
firstly, identifying the gaps created within the 
pGDE once it had been placed in palinspastic 
space; and secondly, using these gaps to select 
its bounding lithology polygons. The adjacent 
polygons were used to assign a lithology to the 
gap polygon.

After unsatisfactory results from Method 1, 
the plate reconstruction process that creates 
the gaps within the pGDE maps was itself 
investigated. It was realized that it was more 
effective to create the gap polygons from 
reconstructing the vertices of the present-day 
GDE polygons using the Neftex® Predictions 
Plate Model. This also made assigning the 
lithology much simpler. The approach is outlined 
in Figure 2.

Application of the script to our most recent pGDE 
map resulted in the successful infilling of the 
gaps (example within Figure 3). As a result, the 
geoscientists completing the pGDE map were 
able to minimize time spent on finding and filling 
gaps between reconstructed polygons and, thus, 
allocate more time to enhance the geological 
resolution of the product.

This single example demonstrates how the use 
of Python can result in increased productivity 
and provide the geoscientist more time to focus 
on the things that matter — the geoscience 
— rather than fixing gaps between polygons. 
Such automated processes are essential steps 
in working toward an evergreen, subsurface 

geological model where client data can be 
seamlessly incorporated into the Neftex 
Predictions product suite.

Embracing the use of programming languages, 
such as Python, within the Neftex Predictions 
product suite allows for the automation 
of processes, such as data collection and 
interpretation. This automation is vital to enable 
us to efficiently maintain and update such a large 
suite of products, while retaining our geoscientific 
rigor. Once achieved, it is possible to generate 
a dynamically updatable, subsurface geological 
model with the option to incorporate client 
proprietary data for bespoke model delivery.
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Figure 3 > Addition of the 
newly created polygons 
resulted in the infilling of 
gaps created as a result 
of reconstruction.
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